APRIL, 1974
VOL. 12, NO. 4

EDP ANALYZER

©¢,,>fi?74 by Canning Publications, Inc.

ISSUES IN PROGRAMMING MANAGEMEI@T

vk

Some observers of the computer field have been predicting the.
demise of the programmer as a job title, with the application pro-
grammer being the first to disappear. They say that new tech-
nology will take over the programming function as it is now
known. These seers may be right eventually but there isn’t much
evidence to support their views as yet. It appears that program-
mers—and the management of programmers—will continue to be
needed as far ahead as our crystal ball can see. But the manage-
ment of programmers has been a challenge since the days of Uni-
vac I, and new theories continue to be proposed. In this report,
we consider three types of proposals that are currently being
widely discussed. These are: conducting programming as a team
effort, performing programming as an engineering-type activity,
and certifying programmers. They each deserve consideration

and—depending upon the circumstances—support.

“T

here is a serious and widespread debate un-
derway on how the computer programming ef-
fort can best be conducted and managed.” One of
the more interesting characteristics of our field is
that this statement could just as well have been
made in 1955 or 1965 or 1974; it probably can be
repeated in 1980. The fact is, the management of
the programming function continues to be almost
the same challenge that it was in the early days of
our field.

Yes, there have been some improvements.
There are more tools and techniques available for
use. Programming skills have been sharpened by
training. But projects have grown larger and
more complex, So projects have continued to be
completed behind schedule and over cost—if they
are even completed at all-and programming
continues to be on the critical path of most proj-
ects.

Currently, there are three types of proposals
that have been advanced for improving pro-
gramming performarice and that are receiving

widespread debate. These are:

® The structure of the programming function

® The engineering of software

® The certification of programmers
Some of these proposals seem to fit together well,
and others are definitely at odds. We will present
the main points of each of the major proposals,
and will give references to further detailed dis-
cussions. It is quite possible that data processing
management will be pressured to take a for-or-
against stand on some of these proposals in the
not-distant future. If you have not yet studied
these proposals, we hope this report will be help-
ful for beginning that study.

The structure of the programming function

Some of the proposers say that a significant im-
provement in the programming function can
come about only by a restructuring of that func-
tion. They say that the conventional structuring
of the programming group leads to wasted mo-
tions, frustrations, dissatisfactions with pro-

Reproduction prohibited; copying or photocopying this report is a violation of the copyright law; orders for

copies filled promptly; prices listed on last page.

gramming management, and such.

We see three basic types of structures now
being proposed for the programming function:

® Multi-level hierarchies

e Fixed structure teams

® Adaptive teams

Multi-level hierarchy of individuals

The term “individuals” in the above heading
requires some explanation. We are discussing pro-
grammers as individuals here, as opposed to close-
knit teams of programmers. Later, too, we will
mention a multi-level hierarchy of teams. A bier-
archy of individuals is pretty much the way that
programming groups have been organized over
the years.

The Infotech State of the Art report on “Com-
puting Manpower” (Reference 1) gives a good
summary of recent thinking on programming
management. Most of the discussion applies to
the conventional hierarchical organization of the
staff, and some of the new thoughts that people
have had for improving the performance of such
staffs. For instance, Joel Aron tells of methods
that have been successfully used at the IBM Fed-
eral Systems Division for managing very large
projects. Aron makes the point that he is not pre-
scribing these methods for others; he is just telling
what has worked for IBM.

At the IBM Federal Systems Division, they do
contract work for the U.S. federal government, as
well as for other organizations and agencies. The
projects generally require from 2 to 6 years
elapsed time, and involve from 3 to over 800
people each. The procedures that IBM has devel-
oped for managing such projects were the basis
for a course taught to programming managers in
IBM. From the guidelines used in that course,
Metzger has put together a useful book, Manag-
ing a Programming Project (Reference 2).

Hierarchical projects use a strong chain of
command, says Aron. The first level managers
manage the employees—for the purposes of our
discussion, the programmers. These first level
managers must be technically qualified, and must
be able to teach, demonstrate, monitor, and eval-
uate the work of the programmers under them. If
a first level manager performs well, he is pro-
moted to a second level manager. (Aron says that
about one-half of the programmers are women,
and that the number of women managers is rising

EDP ANALYZER, APRIL 1974

rapidly.) The second level managers manage the
first level managers. These second level managers
must learn the technology of project manage-
ment. They are mainly concerned with setting ob-
jectives, monitoring progress, and deciding what
to do next.

In a large project, there are additional levels of
managers, culminating in the project manager.
The higher and higher levels gradually get further
and further away from the programming details
and techniques. Since they are called upon to
make both administrative and technical decisions,
technical advisers are provided for these higher
level managers. A technical adviser is at roughly
the same job level as the manager he advises.

Aron says that they have identified four main
types of programmers. One type is the people
who, by skill and experience, have shown that
they are capable designers. They handle the
major system and program design functions. An-
other type is the test and integration specialists. A
third type is the support programmers. The bulk
of the staff consists of the regular programmers,
the fourth type.

Reference 2 gives a good discussion of the
methods that IBM has used for managing large
projects, in the type of environment just de-
scribed.

Fixed structure teams

The best known example of fixed structure
teams is the IBM Chief Programmer Team ap-
proach, described by Mills (References 1 and 16)
and Baker (References 3 and 4). Interestingly, it
too was developed at the IBM Federal Systems
Division.

Mills makes the point that the chief program-
mer team in concept is like a surgical team. It
consists of a nucleus of people, with the chief pro-
grammer having a role comparable to the sur-
geon; the chief programmer is supported by a
backup programmer and a programmer/librar-
ian, in much the same way that the surgeon is sup-
ported by nurses, anesthesiologist, and so on.
Then, as required, specialists are brought in to
help perform the work; in the case of program-
ming team, this would be additional program-
mers and system analysts. The chief programmer,
chosen for his skill and experience, is the architect
and key coder of the program(s) being developed.
He codes the control code for the top level mod-

ules and defines the interfaces. He then assigns the
functional programming tasks to the other pro-
grammers on the team. The backup programmer
aids the chief programmer. The programmer/li-
brarian relieves the chief programmer of most of
the clerical work, and is responsible for maintain-
ing the program library and listings.

Baker discusses the experience of a chief pro-
grammer team in developing a large information
retrieval system for the New York Times news-
paper. The project required almost two years
elapsed time, and involved 11 man-years of team
member time. A total of ten people were on the
team; four programimers, for instance, were team
members for between three and five months each.
A project manager, not actually a member of the
team, handled contract details and relieved the
chief programmer of many administrative mat-
ters.

This project was significant in that it produced
usable, relatively bug-free code at a very high
production rate. Some 83,000 lines of source code
were produced; counting just the programmer
time for unit design, programming, debugging,
and testing, the rate was 65 lines of source code
per programmer day. In all of this code, only 21
errors were found during exhaustive acceptance
testing. In the next year and one-half of operation,
only 25 more errors were found. The bulk of these
errors were missing functions or misunder-
standings.

Allin all, this instance of the chief programmer
team approach was very impressive in its accom-
plishments.

Adaptive teams

Weinberg (Reference 5) is the chief spokesman
for the adaptive team; Ogdin (Reference 7) lends
his support to the concepts.

Weinberg gives an eloquent discussion of the
problems of programming and how his ideas on
team programming help to solve those problems.
He advocates a close-knit team, of perhaps six to
ten people in size. The team has no assigned
leader; rather, leadership shifts between the team
members based upon the needs of the moment
and the strengths of the individual team members
(hence the term “adaptive”). For instance, when a
good amount of debugging is occurring, if one of
the team members is particularly good at debug-
ging, he might assume the role of team leader dur-

EDP ANALYZER, APRIL 1974

ing that period.

Perhaps the main feature of Weinberg’s con-
cepts, if one feature can be singled out, is that of
“egoless programming.” In a conventional pro-
gramming organization, says Weinberg, a pro-
gram is assigned to a programmer. The
programmer is responsible for that program; he
designs it, codes it, debugs it, and hopefully docu-
ments it. The program is a part of himself; if bugs
are found in it after he has said it was completed,
he treats these as.an attack on him. In short, in
such a situation, a programmer’s programs are a
part of his ego. Instead of this, says Weinberg, a
team should practice egoless programming. Each
team member should read the code of the other
team members—to understand what is being
done, and to catch flaws. A piece of completed
code is then not the product of an individual team
member but rather of the team as a whole.

There are other important features in what
Weinberg proposes. One is democratic team man-
agement—since there is no assigned leader—for
the handing out of assignments and for taking cor-
rective actions. Work is assigned based on the
strengths of the team members. In fact, the pro-
gram(s) may be designed based on the skills of the
people on the team. The team stays together; new
people are not normally assigned to it for short
periods of time. In a sense, the team is like a close-
knit family, with a spirit of friendship tempering
the professional criticism of each other’s code
that occurs.

Multi-level hierarchy of teams

Both of the team structures described above are
based on teams of approximately eight members.
Eight is not a hard and fast number; six to ten
might be a good range. If the team gets much
larger, it tends to split into cliques.

So what should be done for projects where a
team of eight or so people clearly is inadequate to
accomplish the job in the required time? Baker
(Reference 3) proposes a hierarchy of teams. The
top level team would perform the overall system
architecture. It would then separate, with the in-
dividual*team members becoming chief program-
mers of the second level teams. This process
might be continued for additional levels, if the
project is large enough.

While Baker believes that this approach will
work, he is just now conducting his first test of it.

So any discussions of this approach would be con-
jectural.

We will limit our discussion, then, to the three
types of structure that have been tested—the hier-
archy of individuals, the fixed structure team, and
the adaptive team. We will compare these three
structures in terms of:

@ The role of the individual programmer

® Improving programmer performance

Much of the information for this discussion
comes from References 1 through 6.

The role of the individual programmer

With the hierarchical structure, management
tends to look upon the individual programmers as
interchangeable units. This statement is extreme,
of course, since individual differences are recog-
nized. But there is a tendency to look at the pro-
gramming function as so many slots on the
organization chart, to seek to hire “experienced
programmers,” and to shift programmers be-
tween projects as the workload requires.

Management in a hierarchical structure tends
to be autocratic, in that management makes the
decisions (but often on the advice of subordi-
nates). Managers assign tasks to their subordi-
nates, monitor progress, and make decisions on
any corrective action that may be needed.

The individual programmers, in turn, are held
responsible for their programs. Each is expected
to design, code, debug, and document the pro-
grams assigned to him.

Management in such an organization probably
would welcome the certification of programmers,
as an aid in the hiring and in assigning jobs.

The career paths open to a programmer in such
an environment are the well-known ones. The
programmer may rise up the technical ladder to
systems designer. Or he may rise up the manage-
ment ladder, as a first level, then second level, etc.
manager. Or he may work toward a technical ad-
visory position offered in some organizations.

One of the problems faced by the management
of such organizations is the “old at 35” program-
mer. He may be receiving a much higher salary
than the newly hired 23 year old programmer.
But he may not be as well versed in the new tech-
nology as the new programmer, and his expe-
rience may not equip him to produce much more
than the new programmer. In such situations,
subtle (P) actions might be taken to encourage

EDP ANALYZER, APRIL 1974

such a programmer to leave. Since technological
obsolescence can be avoided through planned
professional development, the “old at 35” syn-
drome is really an indictment of the managers,
says Aron.

In the fixed structure team, some of the ele-
ments of the hierarchy exist. The chief program-
mer is the assigned leader of the team. The
backup programmer, as the name implies, sup-
ports the chief programmer and stands ready to
take his place should the need arise. Also, it is ex-
pected that other programmers will be added to
the team for a period of time, as the workload re-
quires. It is usually desired, according to Baker,
that these programmers be experienced, but posi-
tions might be provided for one or two novices.

The management of the fixed structure team
would be mainly autocratic. The chief program-
mer assigns the tasks, monitors progress, decides
on corrective action.

At the same time, the team can display some of
the characteristics that Weinberg advocates.
Baker, in Reference 4, claims that egoless pro-
gramming was used on the New York Times proj-
ect. Each programmer on the team read the code
of the other programmers. Generally this was ac-
complished, he says, by providing each team
member with the up-to-date listings of the code
that has been produced; the programmer/librar-
ian saw that this was accomplished. In addition,
Baker feels that the chief programmer and
backup programmer should read all of the code
produced, to catch errors, check for compliance
with standards, and so on.

As far as career paths are concerned, Mills (Ref-
erence 1) makes an interesting point. The mem-
bers of a surgical team, excepting the surgeon, do
not plan to become surgeons. They plan to stay in
their own lines of work and develop their profi-
ciency. So it should be with the members of the
programining team, says Mills. True, the backup
programmer should be a potential chief program-
mer, and some of the other programmers might
aspire to become chief programmers in time. But
the goal of most team members should be to de-
velop their talents, rather than climb a career lad-
der, he says.

Baker acknowledges that the chief program-
mer team concept has the usual hard time using
novice programmers. It depends on experienced
programmers for the chief and backup positions;

other team members need a reasonable range of
experience. He suggests that novices might be as-
signed to maintenance programming until they
have enough experience to be assigned to a team.

In the adaptive team, the situation is almost op-
posite from the hierarchical organization. As
mentioned earlier, the goal is to develop almost a
“family” atmosphere (where a woman team
member might in fact play the moderating role of
“mother”). Such a team does not look at a team
member as an interchangeable unit. Instead, the
team seeks to determine the individual strengths
and weaknesses of each member. Work is then as-
signed to exploit the strengths and to avoid the
weaknesses. It is not expected that every team
member be good at design, coding, debugging,
and documentation, as is generally expected of a
“professional” programmer. Further, the lead-
ership is democratic, not autocratic. The team de-
cides on the assignment of tasks. The team
monitors progress, by reading each other’s code.
The team decides what corrective action is
needed and when.

The goal is not to change the membership of
the team, or at most to change it very slowly. If a
member leaves, says Weinberg, the other team
members absorb his load. If a new member is
added, it can take awhile before he is accepted by
the others. The team itself has to decide which
tasks to take from each of the others, to assign to
the new member.

The certification of programmers would not be
necessary, in order to qualify for team member-
ship. Certification will probably attest that the
programmer meets certain standards of design,
coding, debugging, and documenting. In the
changeable structure team, the person is assigned
work that he has demonstrated he can accom-
plish.

From the standpoint of career paths for the
programmers, there appears to be none in this
type of organization. What an adaptive team of-
fers to its members is the opportunity to work ina
friendly yet challenging environment, where the
members can develop their talents. A good pro-
grammer does not get further and further away
from programming, as occurs in a hierarchical
structure when he moves up the management lad-
der. Instead, he stays with programming and
gravitates toward what he does best.

Of course, the team as a whole might have a ca-

EDP ANALYZER, APRIL 1974

reer path, in the sense that it might be given more
and more technically challenging assignments.

One of the risky aspects of this type of team is
that if one member feels compelled to leave the
company, the whole team might move with him.
On the other hand, by its very nature, this type of
team eliminates some of the things that cause pro-
grammers to leave.

Improving programmer performance

The above discussion compared the three types
of structure in terms of the working environment
that they produce. Now we consider how those
environments might translate into productivity.
The comparisons must of necessity be fairly sub-
jective. A controlled experiment, to produce ob-
jective measures, is probably impractical. Also, as
Baker points out, it is very hard to measure the
productivity of programmers.

In the hierarchical structure, if it is desired to
improve programmer productivity, the actions
taken are similar to those that have been used to
improve productivity in other parts of the organi-
zation. The computer is used to perform more of
the programming tasks, such as through the use of
higher level programming languages. Useful de-
sign principles are advocated, such as the use of
modular design. The on-line development of pro-
grams might be used, as we discussed in our June
1972 issue.

Motivation techniques might be used so as to
stimulate programmer performance. A flexible
reward system might be instituted, so that each
person can pick the rewards that are most mean-
ingful to him.

Management training can be given to new sec-
ond level managers, so that they are better able to
do their jobs and are less likely to “turn off” the
people under them.

Quality assurance of the programs that are pro-
duced is normally bandled by stressing modular
design, the testing of modules, and maintaining a
library of test cases.

Since programmer turnover is to be expected,
documentation of work is very necessary. The
buddy System might be used, to assure that some-
one else knows a programmer’s programs, in case
he leaves. Since the loss of key managers might be
very damaging to a project, more efforts are made
to pacify and retain such persons than might be
used for the average programmers.

In short, the types of steps taken to improve
programmer performance in a hierarchical struc-
ture are the ones that most organizations have
been using in the past.

In the fixed structure team, the picture changes
dramatically from what takes place in the hier-
archical structure. First of all, the team is headed
by a very capable programmer, one of the best
that the organization has. He is (hopefully) a
highly productive programmer. Moreover, he is
relieved of most of the clerical and administrative
tasks that tend to reduce the productivity of such
people.

Further, the chief programmer (assisted by the
backup programmer) designs the system that is
being produced and codes the more complex
parts of it. In the hierarchical structure, it is typi-
cal for one group of people to perform the overall
design functions and another group to do the de-
tailed design, coding, and debugging. In the fixed
structure team, the team leader does the design
and some of the coding. He may use specialists to
help in the design, but he is deeply involved in it.

Baker, in References 3 and 4, stresses that one
of the reasons that productivity increased with
the chief programmer team approach was be-
cause of the use of top-down programming. Usu-
ally, he says, top-down design is followed by
bottom-up programming—that is, starting to code
the lowest level modules first. Instead, he recom-
mends, start with the operating system statements
that will be required—the job control language
and link edit statements. Then write the control
code for the top level module, and define the in-
terfaces for the second level modules. While these
are being tested (using dummy second level mod-
ules), start coding the second level modules. Then
test the second level modules (using dummy mod-
ules for the third level), while starting to code the
third level modules. In general, the interfaces be-
tween the modules are defined and coded before
any use is made of those interfaces. In general,
too, the chief programmer and the backup pro-
grammer handle the control coding and the inter-
faces. The functional (applications) code is
assigned to the other programmers.

So the increased productivity of the fixed struc-
ture team may result from the higher quality of
code and the consequent reduced need to rework
it. One group of people does both the design and
the construction. The group is headed by a very

EDP ANALYZER, APRIL 1974

competent programmer, who is backed up by an-
other competent programmer. These two people
write most of the control code and the interfaces,
where many of the debugging problems originate.
The whole group practices egoless programming
in the sense that they read each other’s code. (It
probably is not as egoless as the adaptive team,
because the chief programmer is, in fact, the
boss.) The work is performed by the most capable
people. The team is small so that communications
are good. There is a reduced chance of misunder-
standings.

One cause of loss of performance in a hier-
archical structure is the waste that can occur.
With top-down design but bottom-up construc-
tion, individual programming tasks may not be
seen in context. Any consequent misunder-
standings can cause erroneous lines of code to be
written, which later have to be changed. Conven-
tional programming practices tend to leave bugs
in the code, which must be caught during debug-
ging—which in turn means more debugging time.
Administrative and clerical activities take up a
good percentage of the time of the skilled pro-
grammers, meaning that most of the code is writ-
ten by less skilled people. These are wastes that
the fixed structure team tries to eliminate.

Many of the same things that contribute to per-
formance also contribute to quality assurance.
We discussed earlier in this report the very low
error rate that occurred in the New York Times in-
formation retrieval system.

The team is also structured well for adapting to
crises. If the chief programmer should leave or
become sick, his position is filled by the backup
programmer. No big problem occurs when an-
other team member leaves or must be replaced,
since the change of team membership is a normal
event. If system specifications are changed, the
chief programmer is in a position to decide on the
best course of corrective action.

The adaptive team also aims at increasing pro-
grammer productivity by avoiding the waste that
normally occurs in hierarchical structures. In
many ways, it performs like the fixed structure
team. But there are some important points of
difference.

For one thing, the team stays together. The
people learn how to work together. The team
builds productivity by concentrating on the
strengths of the individual members. Weinberg

restates something that has been well recognized
all along—namely, that the individual differences
between programmers can be very large. Ogdin
(Reference 7) quotes one study that showed the
following worst-to-best ratios, for twelve expe-
rienced programmers that worked on the same
problem: debug time used, 26:1; computer time
used, 11:1; coding time used, 25:1; code size, 5:1;
and running time, 13:1. One person might be very
good at design but very poor at debugging, says
Weinberg. Another might be superior at locating
bugs, but poor at actually correcting them. With
these large individual differences that do exist, the
team will soon learn just where a person’s
strengths lie. The team will then structure the
project and assign tasks so as to exploit those
strengths.

Egoless programming also greatly reduces de-
bugging time, says Weinberg. Since the team
members critically read each other’s code, most
of the bugs are caught before the code even
reaches the machine.

In Reference 6, Weinberg carries his point even
further. He discusses the results of a test that was
run with five programming teams. He notes that
variations in performance between teams can be
almost as great as the variations between individ-
uals. One of the reasons for these variations, he
believes, is the possible misunderstanding of ob-
jectives. The five teams worked on the “same”
problem. But each team was given a different ob-
jective. One was told to minimize the use of core,
another to minimize running time, another to
minimize the number of source statements, an-
other to maximize clarity of the source program,
and the last one to maximize the clarity of the out-
put. As might be expected, the objectives were of-
ten in conflict. Maximum clarity conflicted with
minimum core, for instance. Each team did well
on its primary objective, but was outranked on all
other objectives. That is, each team led the others
only in terms of its primary objective. So if a pro-
gramming team misunderstands the desired ob-
jectives, the program may in fact turn out to be
poor according to the desired objectives.

Weinberg discusses one other test that is per-

.tinent, where two programming groups worked
‘on the “same” program. One group was asked to
write the program as quickly as possible, while
the other one was asked to produce as efficient
code as possible. The “prompt” group required

EDP ANALYZER, APRIL 1974

less than one-half the number of debugging runs
that the “efficient” group needed, but their execu-
tion time was six times that of the “efficient”
group. However, it was found that the “prompt”
program was more flexible and tunable than the
“efficient” program, and could in fact be changed
so as to pick up most of the difference in execu-
tion time. So, says Weinberg, the best course of
action may be to ask programmers to write their
programs promptly, and then allow time for tun-
ing them so as to-improve performance.

It is up to the team, then, to make sure that it
clearly understands the objectives that are de-
sired. The job is divided and assigned to the team
members, according to their individual strengths,
as much as possible. Strive for getting the pro-
gram written promptly, says Weinberg; the
prompt programming tends to produce “sloppy”
code. Then when the program is working, modify
it to meet the desired objectives—core usage, run
time, or whatever.

Quality assurance is achieved by using the
strengths of the individual team members, and
also by egoless programming. And the adaptive
team adjusts well to crises and frustrations, says
Weinberg, because the team itself decides what
the best course of action is.

It is apparent from the above discussions, we
think, that there are sizable differences of opinion
on how programmer performance can best be im-
proved. But the differences of opinion do not end
there. We next will consider the question of “soft-
ware engineering.”

The engineering of software

Two questions stand out. Can software be engi-
neered? (Is programming an art, or can it be ac-
complished under an engineering type of
discipline?) Should software be engineered?
(Even if an engineering type of discipline is feas-
ible, is it desirable?)

We were privileged to attend a workshop on
the subject of software engineering held in the
Spring of 1973. While it was a small group, it in-
cluded leaders in the software field from the U.S.
and Eurbpe. The group represented the spectrum
from advanced research in programming meth-
odology (such as proving the correctness of pro-
grams) to the management of a large
programming staff in a major corporation.

In the discussions, there really was no debate on

the question “can software be engineered?” The
question was raised and the consensus was that it
can be engineered. There was some debate on the
use of the term “engineering,” but there seemed
to be no real question that an engineering type of
discipline could be used.

Nor was there any debate about whether such a
discipline should be used. The consensus of the
group was that the time is right for encouraging a
discipline for the development of software. There
was much discussion, of course, on what aspects
deserved primary attention and what the scope of
the subject area should be.

The consensus of a small group of leaders in the
software field does not prove that software can or
should be engineered. But as far as we are con-
cerned, it does represent professional opinion on
these two questions. We have neither read nor
heard strong counter arguments that would seem
to outweigh the consensus of this group.

The members of the workshop singled out two
major aspects of the subject:

® The technology of software engineering

® The management of software projects

The technology of software engineering

The philosophy of top-down design and con-
struction was recommended by workshop mem-
bers for the development of software. This
recommendation applied whether system soft-
ware or application software was being devel-
oped.

The top-down approach consists of three major
stages: architecture, detailed design, and con-
struction. In each stage, consideration must in-
clude the overall system, the programs, and the
data. Also, in each stage consideration must be
given to quality assurance, which can include ac-
ceptability testing, proof of program correctness,
or some combination of the two. (We will have
more to say about proving correctness of pro-
grams shortly.)

In the architecture stage, the general struc-
turing of the system, the programs, and the data
are performed. This is when the overall plan of at-
tack is determined. This is when the decision is
made, for instance, on whether the program de-
signs will be modular, structured, or monolithic.

In the next two reports, we will discuss modular
versus structured programming, so we will men-
tion only some highlights here. In a sense, struc-

EDP ANALYZER, APRIL 1974

tured programming is a particular type of
modular programming. With structured pro-
gramming, the modules usually are small—say, in
the order of fifty lines of source code. The flow of
control is rigorous. Expressed in terms of family
relationships, control can flow from a grandfather
module to father module to son module, and then
back up this same path. Control does not pass di-
rectly between cousin modules; rather, it must go
up the hierarchy until the common parent (the
grandfather module) is reached and then down
the other branch; see Reference 16. When the
term “modular programming” is used, the mod-
ules can be almost any size, and the flow of con-
trol is not as rigorously defined.

Also, during the architectural stage, the criteria
by which the final system will be judged and eval-
uated should be determined. Some, if not all, of
these criteria will have been set when system re-
quirements and system specifications were devel-
oped, just prior to the architectural stage. But it is
important in the architectural stage to insure that
there is agreement between the users and the de-
signers as to what is wanted.

The members of the workshop identified the
following types of criteria, for judging the final
system:

CRITERIA FOR JUDGING SYSTEMS

1. Basic design criteria—general, simple, modular, using
proven techniques.

2. Development and operating criteria—economic use of re-
sources, effective, useful (meets user needs).

3. Criteria for change—able to understand system and pro-
grams; able to maintain, modify, extend, tune, and trans-
fer to other equipment.

4. Schedule criteria—will system be available in time?

In addition, as we discussed earlier, Weinberg
(References 5 and 6) has stressed the importance
of telling the developers just what is wanted. For
instance, the programmers should be told at the
outset what resource usage is to be minimized, for
the economic use of resources:

¥

ECONOMIC USE OF RESOURCES
‘What is to be minimized?
1) Computer resources used (minimize core, running time,
or other)

2) Development programmer time (develop as promptly as
possible)

3) Maintenance programmer time (provide clarity of
source programs)

4) User time (provide clarity of output)

If the user’s and/or management’s desires are
not clearly spelled out on these items, says Wein-
berg, the programmers may pick the “wrong”
goals.

Also during the architectural stage, the deci-
sions must be made on how quality assurance will
be provided. There are two main approaches to
quality assurance, one widely used and the other
under development. The widely used approach,
of course, is program and system testing. The ap-
proach being developed is “proving the correct-
ness” of programs.

With all of the program testing that is being
done, it would seem that it should be a well devel-
oped discipline by now. Not so, we are told. Much
development work is going on, both in research
environments and in commercial enterprises, for
developing better methods. We will discuss some
recent work on program testing next month. In-
terested readers might read Reference 8, particu-
larly the paper by Krause and Smith on
techniques for predicting the optimum set of test
cases.

But, say some researchers, testing will never
really solve the problem. These people point out
that testing can indicate the presence of bugs, by
detecting them. But testing cannot indicate the
absence of bugs—simply because it is not possible
to develop the test cases for testing all possible
conditions. Instead, what is needed is a means of
proving the correctness of a program, in much the
same way that a mathematical theorem is proved.

Linden (Reference 4) gives a good summary of
the status of program correctness proving tech-
niques, as of the end of 1972. In his presentation,
he mentioned that correctness proving is still lim-
ited to smaller programs, in the order of 200 lines.
Elspas et al (Reference 9) present an assessment of
the techniques for proving program correctness.

Proof of correctness techniques cannot yet
really be considered to be a part of software engi-
neering, except in special cases. The program
sizes to which they can be applied are too small
for general use. But it might be possible to prove

EDP ANALYZER, APRIL 1974

the correctness of the small “kernel” of a security
system, for instance, and then use testing methods
for the remainder of the system.

Moving on to the detailed design stage, we
know of no definitive description of the process.
Baker (Reference 3) describes how the chief pro-
grammer team approached the New York Times
information retrieval system. The chief program-
mer started with the instructions to the operating
system, after which he tackled the control code of
the highest level (control) module. At the same
time, he was defining the appropriate interfaces.
It would seem that the chief programmer was
doing program and data design and construction
simultaneously, but at the highest module level
first. Then he worked down through the other
module levels, concentrating on the flow of con-
trol and data interfaces. The design and coding of
the functional processing was assigned to other
programmers. But in all cases, a top-to-bottom se-
quence was followed.

Weinberg (Reference 5) makes the point very
strongly that the development process is iterative,
and that it is impossible to really separate it into
well defined stages. And what he portrays is cer-
tainly a common occurrence. It is not unusual, as
far as we can tell, to start with a top-down design,
and then begin coding with the lowest level mod-
ules—on the basis that they will influence the de-
sign.

But IBM’s experience with the chief program-
mer team does raise the question of whether bot-
tom-up coding is necessary or desirable. We will
have more to say on this month after next.

The “engineering discipline” of the detailed
design and construction stages thus has not been
well established. It is still an area of debate.

There are a number of tools and techniques
available to the programmer that can be used in
the construction stage. The tools include pro-
gramming languages, compilers, operating sys-
tems, data base management systems, testing aids,
and such. The techniques include quantitative
methods (modelling, simulation, etc.), logic defi-
nition (owcharts, decision tables), data handling
techniques (sorting, searching, etc.), and so on.
Standards and conventions also are a part of what
the programmer should use during program con-
struction.

The members of the workshop on software en-
gineering felt that the technology will now sup-

port a disciplined approach to software
development. The above discussion is an over-
view of how they saw the process structured. But
it seems to us that the concept of top-down design
and construction needs more attention. It appears
to be a very important element of the discipline,
and yet the methodology seems fuzzy.

The management of software projects

While there was reasonable consensus among
the software engineering workshop members as
to the status of the technology, there were some
substantial differences of opinion on the manage-
ment of software projects. The research-oriented
participants seemed to look at the management
related matters as necessary evils, and wanted to
get back to a discussion of the technology. The
management-oriented participants felt just the
opposite. One participant, in fact, from a man-
agement position in an academic and research en-
vironment, felt that the only real stumbling block
for software engineering was the lack of an engi-
neering management discipline in our field. He
felt that this discipline must be defined, taught,
and enforced—and only then does software engi-
neering have a chance of success.

What is involved in applying engineering man-
agement principles to software development? We
see the following elements. Clear statement of
task to be done. The project needs clearly speci-
fied goals. Clearly defined project phases. The
project must go through distinct phases, with
clearly identified milestones. The overall system
must be divided into parts, and the parts in turn
divided into sub-parts. System specifications must
be developed, along with quantitative criteria for
evaluating the system. Use of standards and con-
ventions. The use of standards and conventions
will reduce the development effort, make the 5ys-
tem easier to change, and protect the organiza-
tion against programmer turnover. Control of
changes. As soon as a design has been “com-
pleted” so that it is acceptable to the user, then
that design should be frozen. Should changes be
desired or needed subsequently, they have to go
through a formal change control process before
being implemented. Project milestones and check-
points. There should not be just an end target
date, but a good number of intermediate target
dates. Creeping commitment. Tied in with the
checkpoints are a number of management re-

EDP ANALYZER, APRIL 1974

views, especially in the early phases of the proj-
ect. If project performance is satisfactory,
permission is granted to proceed to the next
checkpoint, but no work beyond that checkpoint
is authorized. If performance is not satisfactory, if
some of the work is still not complete, or if there
have been any significant changes in estimated
costs or benefits, then management must decide
what corrective action to take. No-nonsense man-
agement. Larson (Reference 10) states this case
well. In some organizations, he observes, there is
altogether too much “fun and games” with the
computer—using it for games, puzzles, analyzing
the stock market, and so on. These activities have
to be drastically curtailed. Also, Larson empha-
sizes the importance of a thorough statement of
the problem at the outset, the establishment of
measures of performance, and cost and schedule
goals.

This is the engineering management approach
to projects with which we are familiar; back in
our engineering days, this is the type of environ-
ment we worked in. As far as we can tell, it is still
the environment. It has been and is being used for
advanced technology hardware projects. It has
been used successfully, also, for managing a large
software project in the U.S. APOLLO space pro-
gram. We have discussed various aspects of it in
our June 1968, October 1970, and May 1973 is-
sues, for instance.

But not everyone agrees with this type of man-
agement for software projects, by any means.
Some say that the development of software is
“different” from that of hardware—more com-
plex, perhaps, or more unknowns, or the fact that
a program is intangible. And whether software is
different or not, others say that they will do a
much better job if they can work in the human-
istic environment proposed by Weinberg. Give a
project to a team, says Weinberg, with an end tar-
get date. Then leave the team alone. The team
will do the design, construction, and testing of the
System, using egoless programming. There is no
standard project structure, no distinct project
phases, no (or perhaps a very few) project mile-
stones, and ho lockstep discipline on project prog-
ress.

The question might then be raised: can engi-
neered software be created by an adaptive team
(Weinberg’s approach)? It seems to us that the an-
swer must be: Yes, it can be. Perhaps a more ap-

10

propriate question would be: what is the
probability that an adaptive team will produce
engineered software? The answer hinges on the
degree of both knowledge and self-discipline that
the team has. Assuming that at least some of the
team members are experienced programmers
who know the necessary tools and techniques
mentioned earlier, it will then depend upon the
team’s discipline. To what extent will the team
follow the installation’s standards and conven-
tions? How much importance will the team at-
tach to each of the types of criteria listed earlier?
How likely is it that the team members will get
sidetracked on complex design points that have
only minor influence on the total system oper-
ation? How important does the team regard the
overall schedule and the milestones?

Such questions cannot be answered in general,
of course. We have heard proponents of the strict
discipline approach argue that, if left to them-
selves, programmers are great wasters of time.
We imagine that the proponents of the human-
istic approach would say that if the project goals
are reasonable and meaningful, an adaptive team
will have an effective self-discipline. We suspect
that it is not just a matter of the teams themselves
but perhaps more importantly, the enlightened
management environment in which the teams
work. We would like to see more experience in
this area.

At the same time, it appears to us that the fixed-
structure team can provide the needed discipline
for software engineering. It seems to combine the
benefits of a hierarchical leadership with the stim-
ulating working environment of a close-knit
team.

In fact, from all reports, one would have to say
that the New York Times information retrieval
system is an impressive instance of engineered
software.

The certification of programmers

The basic idea of certifying programmers is
that there is some defined body of knowledge that
a programmer should have, and that a person can-
not be considered a “qualified” programmer un-
less he has that knowledge. The most effective
way to find out if he has that knowledge is to test
him on it.

We might digress briefly to differentiate be-
tween certification and licensing. As discussed in

EDP ANALYZER, APRIL 1974

Reference 11, certification is the affirmation that
an individual has met certain qualifications. Un-
certified persons can perform the same tasks if
they can find patrons. On the other hand, licens-
ing is the administrative lifting of a legislative
prohibition. An unlicensed person cannot legally
perform the tasks for which a license is issued.

If certification of programmers is to occur (and
we will discuss why it is being proposed shortly),
the following steps are needed. First, the job of
the programmer must be defined—a universal job
description for a programmer is needed. Then the
minimum standards of job knowledge and skills
must be defined, for that job description. Then a
testing program must be developed, perhaps
building upon any testing experience already
available in the field. Finally, a public informa-
tion program must be instituted, to make the af-
fected publics aware of what is available and
what its benefits are.

There are two major programs underway in the
U.S. leading toward the certification of program-
mers; we have no recent information on the status
of similar programs in other countries. These two
programs are:

@ Arips Professionalism Project

@ Institute for Certification of Computer Pro-

fessionals

AFIPS Professionalism project

The professionalism project of the American
Federation of Information Processing Societies
Inc. began with a roundtable meeting in January
1970, chaired by The Honorable Willard Wirtz,
former U.S. Secretary of Labor. The roundtable
considered accreditation, certification, and eth-
ics. A report of that meeting has been published
by Arips, Reference 11.

As a first step toward professionalism, it was de-
cided to develop universal job descriptions for
programmers. It was recognized that the certifi-
cation of other job categories might also be de-
sired in the future.

The programmer job description sub-project
was initiated with a one-day meeting in October
1970, chaired by the committee chairman, Donn
Parker. Based on the recommendations of that
meeting, 2 small panel of programming experts
was selected. The Delphi method was used to get
a convergence of opinion in the group. The sub-
ject of study was: what are the tasks and skills that

11

make up the job of programmer? A total of 75
tasks were identified for business programmers,
84 for scientific/engineering programmers, and
79 for system programmers. A total of 163 skills
and techniques was identified. The results of the
study were refined at a one-day meeting of proj-
ect members at the 1972 Sjcc.

Following that meeting, a national survey of
684 programmers was conducted by the project’s
consultant, Dr. Raymond Berger. A random strat-
ified sample of organizations was approached,
from which 248 business programmers agreed to
participate, as well as 250 scientific/engineering
programmers, and 186 system programmers.

Both the Delphi panel and the 684 program-
mers rated the tasks, skills, and techniques as to
importance on their jobs. Or, more precisely, the
Delphi panel rated these in terms of what the pro-
gramming job ought to be, and the 684 program-
mers rated them in terms of their own jobs,
Scatter diagrams are presented in the report, Ref-
erence 12, of these two sets of ratings. It is inter-
esting to note that while there was general
agreement between the two groups, there were
still substantial differences of opinion.

The Arips Professionalism project now feels
that it has a statistically valid set of job definitions
for business programmers, scientific/ engineering
programmers, and system programmers. They are
requesting permission to repeat the project, to de-
fine system analyst job descriptions. Then they
would like to make the results of their work (on
both programmers and analysts) available for use
in general and for the Iccp in particular. The
Iccp, which we discuss next, is concerned with
the development of meaningful certification pro-
grams.

The ICCP

The Institute for Certification of Computer
Professionals (originally called the Computer
Foundation) was formed in 1973 as a not-for-
profit organization. There were eight charter
member societies, including the Data Processing
Management Association, the Association for
Computing Machinery, and the Ieee Computer
Society. See Reference 13 for more background
details.

One question that has come up is: Why was the
Icce formed? Why could not this have been done
under Arips? The reason is that one of the prime

EDP ANALYZER, APRIL 1974

movers, Dpma, was not then a member of Arrps.
In fact, of the eight chartering societies of Icce,
only Acm and Ieee CS were AFips members. The
time may come when Iccp is a part of Arips; the
two organizations are on good terms.

Drpwma is turning over to the Icce the ownership
of its two examinations—the Certificate in Data
Processing, and the Registered Business Program-
mers examination. The Iccp is reviewing both of
these examinations in arriving at a decision on its
future direction. Present plans call for the Icce
continuing to offer these two examinations while
improving them in an evolutionary manner. In
addition, it is recognized that certification might
be needed in a number of other computer-related
areas.

The debates on certification

Why should programmers be certified? Propo-
nents argue that it is now too easy for people to
wander in and out of programming—and that the
quality of programming is suffering thereby.
More and more computer-based systems are di-
rectly affecting the public, or the economic
health of organizations, or individual privacy. We
can best upgrade such systems by certifying the
programmers who work on them, say the propo-
nents of certification.

(A counter proposal is to certify the systems,
rather than the people who develop them. We
have mentioned in past issues the continuing
Artps’ efforts on system improvement and system
certification.)

Weinberg, in Reference 5, argues against the
need for certification. The job of programming
has so many facets which are specific to the proj-
ect that the job cannot be universally defined, he
says. So it will not be possible to test for the
knowledge and skills that will be needed on a spe-
cific project. Also, personality factors might well
be more important than native intelligence fac-
tors, within reasonable limits. By using egoless
programming, each individual’s strengths are
used.

Another argument against certification is that
what the examination tests for is not relevant to
the job environment. The examination tests for
what an individual can do by himself in a short pe-
riod of time. But his normal work environment in-
volves team work over an extended period of
time.

12

Paul Armer, in Reference 14, does not argue
against certification—but he does argue against
the Iccp and Dema’s cop. Instead of creating an-
other organization, there should be a consoli-
dation. More importantly, he feels that the cop is
not a meaningful test. The Iccp should suspend
testing until it develops a meaningful test, Armer
feels, but he recognizes that the Icce is counting
on the income from this examination for the next
several years.

We have discussed the cop in our July 1965 and
December 1968 issues, and gave examples of the
types of questions used. The cpp does dis-
criminate; less than one-half of the people who
have taken the examination have passed it. But
the cpp is not tied to the knowledge and skills re-
quired for any particular job. This is the main ar-
gument, we believe, against the meaningfulness
of the examination; see Reinstedt and Berger in
Reference 15.

Issuves in programming management

Here it is 1974, and the controversies about
how best to manage the programming function
are as intense as were the debates on this subject
ten and fifteen years ago.

We believe that a good number of data process-
ing managers have recently been facing up to the
question of team programming, versus the more
conventional hierarchy of individuals. A number
of organizations that we have interviewed re-
cently on other subjects have mentioned that they
have converted to a form of team programming.

But which form of team programming should

EDP ANALYZER, APRIL 1974

be considered? In actual practice, the fixed struc-
ture team and the adaptive team concepts will
probably turn out to be not too different from
each other. A team programming concept some-
where between these two concepts may well de-
velop. We suspect that the originators of these
two types of team programming are more inter-
ested in practical results than in users absolutely
adhering to the dogma of the concepts.

Baker made an interesting point, in a letter to
us. Trying to install the engineered software ap-
proach can be a good way to move to team pro-
gramming, he said. If an organization sets out to
do a good job of top-down program development,
it will find that it comes close to a team organiza-
tion—although not all of the team structure and
working relationships may be there. The organi-
zation might try out a few projects this way, find
out who the best leaders are in that environment,
and then set up one or two teams. As we indicated
earlier, the chief programmer team concept that
IBM used on the New York Times information re-
trieval system produced an outstanding example
of engineered software.

The state of the art today will support both en-
gineered software and team programming. The
certification of programmers is still some years
away, because of the need to validate and gain ac-
ceptance of a certificate program.

It seems to us that all three of these issues repre-
sent interesting developments in the management
of programming. They are issues that deserve
management’s consideration.

13

REFERENCES

1. Computing Manpower, Infotech State of the Art Report,
Infotech Information Ltd. (Nicholson House, High Street,
Maidenhead, Berkshire, England), 1973, $95 (£40).

2. Metzger, P. W., Managing a Programming Project, Pren-
tice-Hall, Inc. (Englewood Ciffs, New Jersey 07632),
1973.

3. Baker, F. T., “Chief programmer team management of
production programming,” IBM Systems Journal, IBM
Corporation (Armonk, New York 10504), Vol. 11, No. 1,
1972; price $1.50.

4. Proceedings of 1972 Fall Joint Computer Conference,
Arrps Press (210 Summit Avenue, Montvale, New Jersey
07645), 1972; price $40, microfiche $10. See particularly
the sessions on software engineering, p. 173-212 and 311-
344.

3. Weinberg, Gerald M., The Psychology of Computer Pro-
gramming, Van Nostrand Reinhold Co. (450 West 33rd
Street, New York, N.Y. 10001), 1971, price $9.50.

6. Weinberg, Gerald M., ““The psychology of improved pro-
gramming performance,” Datamation (1801 S. La Cien-
ega Blvd,, Los Angeles, Calif. 90035), November 1972, p.
82-85; microfilm copies available from University Micro-
films, 300 N. Zeeb Road, Ann Arbor, Mich. 48106.

7. Ogdin, J. L., “The mongolian hordes versus super-
programmer,” Infosystems (Hitchcock Building, Whea-
ton, Illinois 60187), December 1972, p. 20-23; price $2.

8. Record of 1973 IEEE Symposium on Computer Software
Reliability, Iexe Computer Society (9017 Reseda Blvd.,
Northridge, Calif. 91324), 1973, price $12.

9. Elspas, B., K. N. Levitt, R. . Waldinger, and A. Waks-
man, “An assessment of techniques for proving program
correctness,” Computing Surveys, (ACM, 1133 Avenue of
Americas, New York, N.Y. 10036), June 1972, p. 97-147;
price $8.

10. Larson, H. T., The Larbridge Letter, a monthly service for
top executives, (18521 Embury Drive, Santa Ana, Calif.
92705), price $300 per year.

11. Professionalism in the Computer Field, Arips Press (ad-
dress above), 1970, price $3.

12. Berger, R. M. and D. B. Parker, Computer Programmer
Job Analysis, report of the Arirs Professionalism Com-
mittee; for information, write Executive Director, Arips
(address above).

13. Harris, F. H. and J. K. Swearingen, “Report on the status
of the Institute for Certification of Computer Profes-
sionals,” Data Management (505 Busse Highway, Park
Ridge, Illinois 60068), October 1973, p. 18-21, 32-34;
price $1.50.

14. Armer, Paul, “Suspense won't kill us,” Datamation (ad-
dress above), June 1973, p. 53.

15. Datamation (address above), November 1973:

a) Reinstedt, R. N. and R. M. Berger, “Certification: A
suggested approach to acceptance”

b) Guerrieri, J. A, Jr., “Certification—Evolution, not rev-
olution”

16. Datamation (address above), December 1973; five articles
on structured programming, under the general heading of
“revolution in programming.” One of the papers, by
Baker and Mills, discusses IBM’s chief programmer team
concept.

Next month’s report, the second in a series of three on issues in program-
ming, will discuss modular programming. In the United States at least,
modular programming has received much more support in theory than in
practice. But in the United Kingdom, the approach has been reasonably
well accepted, and a number of software packages to support modular
programming have been marketed successfully. So we decided to visit sev-
eral organizations in England to find out how they are using modular pro-
gramming and what results they have been obtaining. Next month we will
tell about these experiences. And in the June issue, we will conclude this
series with a discussion of user experiences with structured programming.

#

EDP ANALYZER published monthly and Copyright® 1974
by Canning Publications, Inc., 925 Anza Avenue, Vista, Calif.
92083. All rights reserved. While the contents of each report
are based on the best information available to us, we cannot
guarantee them. This report may not be reproduced in whole
or in part, including photocopy reproduction, without the

EDP ANALYZER, APRIL 1974

written permission of the publisher. Richard G. Canning, Edi-
tor and Publisher. Subscription rates and back issue prices on
last page. Please report non-receipt of an issue within one
month of normal receiving date. Missing issues requested af-
ter this time will be supplied at regular rate.

14

